
Testing, Debugging & Securing AI-Assisted Code
Course #: AI-302 Duration: 2 days

Prerequisites

Completion of AI Foundations for Software Developers and Professional Software Development with GitHub Copilot, or equivalent
experience using AI-assisted coding tools in professional software development workflows.

Details

AI-assisted development accelerates code creation—but it also introduces new risks related to correctness, security, and long-term
maintainability. This course focuses on the counter-skills developers need when working with AI-generated code: rigorous testing,
disciplined debugging, and proactive security review.

Participants learn how to evaluate, test, debug, and secure code they did not write line-by-line, how to avoid false confidence from AI-
generated tests and fixes, and how to maintain professional engineering standards in AI-augmented development environments.

After attending this course, students should be able to:

Identify common defects and risks in AI-generated code
Design effective tests for AI-assisted implementations
Debug AI-generated logic systematically and confidently
Recognize security vulnerabilities introduced by AI tools
Apply professional judgment to determine when AI output is safe to use

This course is designed for software developers and technical leads responsible for maintaining code quality, reliability, and security in
environments where AI-assisted coding tools are in active use.

Software Needed

Participants must have a laptop or desktop computer (Windows, macOS, or Linux) with a modern code editor or IDE, reliable internet
access, and a working local development environment for at least one commonly used programming language in their organization (for
example, Python, JavaScript/TypeScript, Java, or C#). The environment must support running unit tests, stepping through code with a
debugger, and installing dependencies (package manager access). Git and command-line access are required. If the organization uses AI-
assisted coding tools (such as GitHub Copilot), participants should have access available for exercises, though the course can be
completed using provided examples and standard tooling. All work should comply with organizational security, privacy, and confidentiality
requirements.

Outline

Testing, Debugging & Securing AI-Assisted Code

Why AI-Assisted Code Requires Different Quality Controls
How AI changes defect patterns and failure modes
Why “looks correct” is more dangerous than obvious bugs

www.logicalimagination.com
800.657.1494

https://www.logicalimagination.com
https://staging.logicalimagination.com/courses/testing,-debugging-&-securing-ai-assisted-code

The illusion of confidence in AI-generated output
Shifting responsibility in AI-augmented development

Evaluating AI-Generated Code
Reading AI-generated code critically
Identifying hidden assumptions and missing constraints
Recognizing over-generalized or incomplete logic
Knowing when to refactor vs. rewrite

Testing AI-Assisted Code
Why AI-generated code needs more testing, not less
Writing unit tests for AI-generated implementations
Designing tests for edge cases and failure scenarios
Avoiding shallow or misleading test coverage

AI-Generated Tests: Benefits and Risks
When AI-generated tests are useful
Common gaps in AI-generated test suites
False confidence from passing tests
Improving AI-generated tests through human review

Debugging Code You Didn’t Write
Debugging strategies for unfamiliar logic
Tracing behavior back to incorrect assumptions
Identifying subtle behavioral regressions
Using AI tools to assist debugging responsibly

Fix-Forward Workflows
Using tests to drive corrections
Avoiding infinite fix-prompt-fix cycles
Ensuring fixes don’t introduce new defects
Maintaining clarity and intent during iteration

Security Risks in AI-Assisted Development
Common insecure patterns introduced by AI
Input validation and injection vulnerabilities
Authentication and authorization mistakes
Dependency and configuration risks

Secure Review of AI-Generated Code
Treating AI output as untrusted input
Incorporating security review into workflows
Knowing when human security expertise is required
Reducing risk without blocking productivity

Licensing, Compliance, and IP Considerations
Understanding licensing risks in AI-generated code
Organizational policies and acceptable use
Documenting AI assistance where required
Aligning with legal and compliance expectations

Maintaining Quality at Scale
Preventing AI-accelerated technical debt
Establishing quality standards for AI-assisted code
Supporting consistent practices across teams
Measuring quality alongside productivity

	Testing, Debugging & Securing AI-Assisted Code
	Prerequisites
	Details
	Software Needed
	Outline

