800.657.1494

Designing, Building & Governing Al Assistants with Python

Course #: Al-204 Duration: 3 days

Prerequisites

Completion of Al Foundations & Risk for IT Professionals, Designing Reliable Al Workflows & Interactions, Al Architecture & Agentic
Systerms, and Building MCP-Based Al Systerms with Python, or equivalent experience designing and implementing Al-enabled systems

using Python.

Details

This capstone course brings together Al architecture, workflow design, MCP-based implementation, and operational governance into a
single, end-to-end experience. Participants design and build a production-ready Al assistant that uses structured tools and backend
services, then deploy, monitor, and govern that assistant over time. Rather than focusing on demos or chatbots, the course emphasizes
assistant behavior, boundaries, reliability, accountability, and lifecycle management, ensuring Al assistants remain trustworthy and
supportable after initial deployment.

After attending this course, students should be able to:

Design Al assistants with clear roles, scope, and behavioral boundaries
Implement a tool-using Al assistant backed by MCP-based services

Manage multi-turn interactions, confirmations, and error handling

Deploy Al assistants responsibly into organizational environments

Establish ownership, governance, monitoring, and change-management practices
Evaluate assistant effectiveness and retire or evolve assistants safely

This course is designed for technical professionals responsible for delivering Al assistants that must be finctional, reliable, secure, and
sustainable in real organizational environments. This course is hands-on and implementation-focused, with governance and operational
considerations integrated throughout.

Software Needed

Participants must have a laptop or desktop computer (Windows, macOS, or Linux) with Python 3.10 or later installed, a modern web
browser, and reliable internet access. The ability to create and activate Python virtual environments, install packages, and run local
development services is required. Access to an organization-approved Al assistant runtime that supports tool integration (such as an
MCP-compatible client) is required. Participants should follow all organizational security, privacy, and confidentiality guidelines when
building, testing, or discussing Al assistants.

Outline
Designing, Building & Governing Al Assistants with Python

e What an Al Assistant Really Is
o Assistants as persistent system actors
o How assistants differ from workflows and agents


https://www.logicalimagination.com
https://staging.logicalimagination.com/courses/designing,-building-&-governing-ai-assistants-with-python

o Why assistant design affects trust and risk

Defining Assistant Purpose, Role, and Scope
o Clarifying what the assistant is responsible for
o Explicitly defining what the assistant must not do
o Aligning assistant behavior with organizational needs

Designing Assistant Behavior
o System instructions and role definition
o Managing tone, clarity, and expectations
o Avoiding misleading authority and overconfidence

‘Wiring the Assistant to MCP Tools
o Connecting the assistant to MCP servers

o Selecting appropriate tools for assistant use
o Enforcing boundaries through schemas and validation

Multi-Turn Interaction Design
o Clarification and confirmation patterns
o Managing state across interactions
o Handling incomplete or ambiguous requests

Error Handling and Safe Failure
o Anticipating assistant failure modes
o Designing recovery and fallback behavior
o Preventing silent failures

Testing Assistant Behavior
o Functional testing of assistant flows
o Edge cases and misuse scenarios
o Validating assistant responses and actions

Deployment Models for Al Assistants
o Local, internal, and enterprise deployments
o Configuration, secrets, and permissions
o Managing environments and access

Observability and Monitoring
o Logging assistant actions and decisions
o Detecting drift and degradation
o Identifying misuse and unexpected behavior

Ownership and Accountability
o Defining who owns an Al assistant
o Human accountability for assistant behavior
o Escalation and intervention models

Governance and Risk Management
o Aligning assistants with policy and compliance
o Managing data access and privacy
o Responding to incidents and near misses

Change Management and Versioning
o Updating prompts, tools, and behavior safely
o Communicating changes to users

o Avoiding breaking changes

Scaling and Managing Multiple Assistants
o Preventing assistant sprawl
o Standardizing governance without blocking innovation
o Platform approaches to assistant management

Evaluating and Retiring Assistants
o Measuring usefulness and trust
o Deciding when to redesign or retire an assistant
o Lessons learned fromreal deployments



	Designing, Building & Governing AI Assistants with Python
	Prerequisites
	Details
	Software Needed
	Outline


